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Abstract

This article considers the mixture inventory model involving variable lead time with backorders and lost sales. We
first fuzzify the random lead-time demand to be a fuzzy random variable and obtain the total cost in the fuzzy sense.
Then, we further fuzzify the total demand to be the triangular fuzzy number and derive the fuzzy total cost. By the
centroid method of defuzzification, we derive the estimate of total cost in the fuzzy sense. Also, we find the optimal
solution for order quantity and lead time in the fuzzy sense such that the total cost has a minimum value. A numerical
example is provided to illustrate the results of proposed model.
� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The issue of lead-time reduction has received a great deal of attention in the field of production/inven-
tory management. As stated in Tersine [15], lead time usually consists of the following components: order
preparation, order transit, supplier lead time, delivery time and setup time. Although most of the litera-
ture dealing with inventory problems viewed lead time as an uncontrollable variable, however, in some
practical situations, lead time can be reduced by controlling some or all of its components. The benefits
associated with efforts to reduce lead time, such as lower the safety stock, reduce the loss caused by stock
0377-2217/$ - see front matter � 2004 Elsevier B.V. All rights reserved.
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out, increase the service level to the customer, and gain the competitive advantages in business, can be
clearly perceived through the Japanese successful experiences of using Just-In-Time (JIT) produc-
tion. Concerning the inventory systems with lead-time reduction, Liao and Shyu [8] first presented a
continuous review inventory model in which the order quantity is predetermined and lead time is a
unique variable that can be controlled by paying extra crashing cost. This model has been
extended by Ben-Daya and Raouf [1] to include both lead time and order quantity as decision varia-
bles. Later, Ouyang et al. [10] developed a more general model, where they extended [1] by allowing
shortages and considered that only a fraction of the demand during the stockout period can be
backordered.

The above lead-time reduction models [1,8,10] are based on the continuous review inventory systems in
which the uncertainty of demand during lead time is tackled from the traditional probability theory and
the annual average demand is assessed by a crisp value. However, various types of uncertainties and
imprecision including randomness and fuzziness are inherent in real inventory environments, In this arti-
cle, we shall then address the issue of lead-time reduction under such circumstances. Specifically, we
attempt to develop a fuzzy inventory model by considering the fuzziness and randomness for lead-
time demand, which will be represented by a fuzzy random variable, based on the concept proposed
by Puri and Ralescu [13]. Also, for the annual average demand, due to the fact that it may fluctuate a
little in an unstable environment and is difficult to assess by a crisp value, we shall consider it as the fuzzy
number.

It should be pointed out that the fuzzy sets concept was initially introduced by Zadeh [19] in 1965.
Besides, in the literature, there are several researchers presented various types of fuzzy inventory models.
For example, Petrovic and Sweeney [12] fuzzified the demand, lead time and inventory level into trian-
gular fuzzy numbers in an inventory control model. Vujosevic et al. [16] extended the EOQ model by
introducing the fuzziness of ordering cost and holding cost. Chen and Wang [3] fuzzified the demand,
ordering cost, inventory cost, and backorder cost into trapezoidal fuzzy numbers in EOQ model with
backorder. Roy and Maiti [14] presented a fuzzy EOQ model with demand-dependent unit cost under
limited storage capacity. Gen et al. [4] considered the fuzzy input data expressed by fuzzy numbers, where
the interval mean value concept is used to help solving the problem. Ishii and Konno [5] fuzzified the
shortage cost into L shape fuzzy number in a classical newsboy problem aimed to find an optimal order-
ing quantity in the sense of fuzzy ordering. Chang et al. [2] presented a fuzzy model for inventory with
backorder, where the backorder quantity was fuzzified as the triangular fuzzy number. Lee and Yao [7]
and Lin and Yao [9] discussed the production inventory problems, where [7] fuzzified the demand quan-
tity and production quantity per day, and [9] fuzzified the production quantity per cycle, all to be the
triangular fuzzy numbers. Yao et al. [17] proposed the EOQ model in the fuzzy sense, where both order
quantity and total demand were fuzzified as the triangular fuzzy numbers. Yao and Su [18] presented the
fuzzy EOQ model for the inventory with backorders, where the total demand was fuzzified to be the
interval-value fuzzy set. Ouyang and Yao [11] presented a mixture inventory model involving variable
lead time, where the annual average demand was fuzzified as the triangular fuzzy number and as the sta-
tistic-fuzzy number.

From literature survey, we note that although several fuzzy inventory models have been presented, lit-
tle has been done on addressing the issue of lead-time reduction. The purpose of this article is to recast
Ouyang et al.�s [10] mixture inventory model involving variable lead time with backorders and lost sales
by further considering the fuzziness of lead-time demand and annual average demand. We aim at provid-
ing an alternative approach of modeling uncertainty that may appear in real situations; whereas we do
not attempt to establish the superiority of proposing a new model to reduce more inventory cost than
previous one.

This article is organized as follows. In Section 2, a brief review of Ouyang et al.�s [10] model is given. In
Section 3, we develop the fuzzy mixture inventory model involving variable lead time. Using the centroid
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method of defuzzification, we derive the estimate of total cost in the fuzzy sense. Two theorems are ob-
tained. In Section 4, we derive the optimal order quantity and the optimal lead time by minimizing the esti-
mate of total cost in the fuzzy sense. A numerical example is provided to illustrate the results. In Section 5,
we discuss some problems for the proposed model. Section 6 summarizes the work done in this article.
2. Review of Ouyang et al.’s model

To develop the proposed model, we adopt the following notation and assumptions used in Ouyang et al.
[10].

Notation
D a
verage demand per year

Q o
rder quantity
A fi
xed ordering cost per order
h i
nventory holding cost per item per year
p fi
xed penalty cost per unit short
p0 m
arginal profit per unit
L l
ength of lead time
r r
eorder point ffiffiffip

X l
ead-time demand, which is normally distributed with finite mean lL and standard deviation r L,

where l and r denote the mean and standard deviation of the demand per unit time
x+ m
aximum value of x and 0, i.e., x+=max{x, 0}
E(Æ) m
athematical expectation.
2.1. Assumptions

(1) The reorder point, r=expected demand during lead time + safety stock (SS), and SS=k Æ (standard
deviation of lead-time demand), i.e., r ¼ lLþ kr

ffiffiffi
L

p
where k is the safety factor and satisfies

P(X> r)=P(Z>k)=q, Z represents the standard normal random variable, and q represents the allow-
able stockout probability during lead time L, and q is given.

(2) Inventory is continuously reviewed. Replenishments are made whenever the inventory level falls to the
reorder point r.

(3) The lead time L has n mutually independent components each having a different crashing cost for
reducing lead time. The ith component has a minimum duration ai and normal duration bi and a crash-
ing cost per unit time ci. Furthermore, we assume that c16 c26 � � �6 cn.

(4) The components of lead time are crashed one at a time starting with the component of least ci and so
on.

(5) If we let L0 ¼
Pn

j¼1bj and Li be the length of lead time with components 1; 2; . . . ; i crashed to their min-
imum duration, then Li can be expressed as Li ¼

Pn
j¼1bj �

Pi
j¼1ðbj � ajÞ; i ¼ 1; 2; . . . ; n; and the lead

time crashing cost per cycle U(L) for a given L2 [Li,Li�1], is given by
UðLÞ ¼ ciðLi�1 � LÞ þ
Xi�1
j¼1
cjðbj � ajÞ and UðL0Þ ¼ 0: ð1Þ
By the above assumptions and considering that only a fraction b (06 b6 1) of the demand during the
stockout period can be backordered, Ouyang et al. [10] established the total expected annual cost as
follows.
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EACðQ; LÞ ¼ setup costþ holding costþ stockout costþ lead time crashing cost

¼ A
D
Q
þ h Q

2
þ r � lLþ ð1� bÞEðX � rÞþ

� �
þ D
Q
½p þ p0ð1� bÞ
EðX � rÞþ þ D

Q
UðLÞ

¼ D
Q
fAþ ½p þ p0ð1� bÞ
EðX � rÞþ þ UðLÞg þ h Q

2
þ kr

ffiffiffi
L

p
þ ð1� bÞEðX � rÞþ

� �
; ð2Þ
for Q>0, L2 [Li,Li�1], i=1,2, . . .,n, where E(X� r)+ is the expected demand shortage at the end of the
cycle.
3. Fuzzy mixture inventory model involving variable lead time

In contrast to Ouyang et al.�s [10] model, we will consider the fuzzy mixture inventory model in this
article. Let ðR;B; P Þ be the probability space, where R is the set of real number, B is the Borel field on R,
and P is a probability measure. The lead-time demand, X, in Section 2 is a random variable on ðR;B; P Þ,
which is assumed to be normally distributed with mean lL and standard deviation r

ffiffiffi
L

p
, i.e.,

X  NðlL;r
ffiffiffi
L

p
Þ. For notational convenience, from now on, we denote lL=lL and rL ¼ r

ffiffiffi
L

p
, where

l is an estimate (a known value), i.e., lL is an estimate. Then, the probability density function (pdf)
of X is
f ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
rL

e
�ðx�lLÞ2

2r2
L ; �1 < x < 1: ð3Þ
X is called the crisp random variable. Corresponding to X, we consider the fuzzy random variable eX
here.

By definition of Li (Assumption 5), we have min06 i6 nLi=Ln and max06 i6 nLi=L0 hence Ln6L6L0.
In the uncertain and/or unstable environments, for any L2 [Li,Li�1], i=1,2, . . .,n, it is difficult for the deci-
sion-maker to determine the lead-time demand (LTD) with a single value E(X)=lL, rather it may easier to
determine LTD by an interval [lL�D1, lL+D2] where D1, D2 are determined by the decision-maker and
should satisfy the conditions: 0<D1<lLn

and 0<krL0
<D2 (see Eqs. (6) and (7) in the following). Since

[lL�D1,lL+D2] is an interval, so the decision-maker must take an appropriate value (we denote it by
l̂L) from the inside of this interval as the estimate of LTD. If the chosen value is lL, it is the same as
E(X)=lL of the crisp case, then the error of estimation jl̂L � lLj is 0. Moreover, if the chosen value is lo-
cated in the left-hand side (LHS) or right-hand side (RHS) of lL, then the further the chosen value l̂L is
away from lL, the larger the error of estimation jl̂L � lLj, and the largest errors will occur at the end points
of interval [lL�D1, lL+D2].

In the fuzzy viewpoint, we may employ the confidence level instead of error. For the case of l̂L ¼ lL the
error is 0, and the confidence level is in the largest and we let it be 1. In contrast, the further the value l̂L is
away from lL, the smaller the confidence level to be. At the end points of the interval, i.e., l̂L ¼ lL � D1 and
l̂L ¼ lL þ D2, the confidence level is in the smallest and we let it be 0.

Next, let us consider the following triangular fuzzy number,
~lL ¼ ðlL � D1; lL; lL þ D2Þ; ð4Þ
where 0<D1<lLn
and 0<krL0

<D2 (see Eqs. (6) and (7)). The membership grade of ~lL is 1 at point lL, de-
creases as the point away from lL, and reaches 0 at the end points lL�D1 and lL+D2. Since the properties
of membership grade and confidence level are the same, consequently, when the membership grade is
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treated as the confidence level, corresponding to the interval [lL�D1, lL+D2] it is reasonable to set the
triangular fuzzy number ~lL as Eq. (4).

Utilizing the centroid method to defuzzify ~lL, we obtain
Cð~lLÞ ¼ lL þ 1
3
ðD2 � D1Þ ¼ 2

3
lL þ 1

3
D2 þ 1

3
ðlL � D1Þ > 0: ð5Þ
Cð~lLÞ is regarded as the estimate of LTD in the fuzzy sense and Cð~lLÞ 2 ½lL � D1; lL þ D2
. For the spe-
cial case D1=D2, we have Cð~lLÞ ¼ lL.

Furthermore, from the assumption that the reorder point r=lL+krL, we set ~r is a fuzzy point with
membership function m~rðxÞ ¼ 1 if x= r, and m~rðxÞ ¼ 0 if x 6¼ r. We then obtain the following triangular
fuzzy number:
~lLð�Þ~r ¼ ðlL � r � D1; lL � r; lL � r þ D2Þ: ð6Þ

Note that ~r is identical with the fuzzy number ~r ¼ ðr; r; rÞ, and the arithmetic of fuzzy numbers can be

found in several textbooks, e.g. [6].
From above, 0<D1<lLn

and 0< r�lL=krL<krL0
<D2, we then have
lL � r � D1 < lL � r0; 0 < lL � r þ D2: ð7Þ

From [13], the fuzzy random variable can be defined as a mapping from R of probability space ðR;B; PÞ

to a family of membership functions. Corresponding to the crisp random variable X, we set the fuzzy ran-
dom variable eX as
eX : sð2 RÞ ! eX ðsÞ; ð8Þ
where eX ðsÞ is the membership function. Let the fuzzy set that has eX ðlLÞ as membership function beeX �ðlLÞ ¼ ~lL (as defined in Eq. (4)).
Next, let Y=X� r, then we can obtain the pdf of random variable Y as:
gðyÞ ¼ 1ffiffiffiffiffiffi
2p

p
rL

e
�ðyþr�lLÞ2

2r2
L ; �1 < y < 1: ð9Þ
Corresponding to the crisp random variable Y, the fuzzy random variable eY is defined as:
eY : tð2 RÞ ! eY ðtÞ; ð10Þ
where eY ðtÞ is the membership function. Also, let the fuzzy set that has eY ðlLÞ as membership function beeY �ðlLÞ ¼ eX �ðlLÞð�Þ~r ¼ ~lLð�Þ~r (as defined in Eq. (6)). Then, we have
eY ðlLÞðyÞ ¼
y�ðlL�r�D1Þ

D1
; lL � r � D1 6 y6 lL � r;

ðlL�rþD2Þ�y
D2

; lL � r6 y6 lL � r þ D2;

0; otherwise:

8>>><>>>: ð11Þ
The picture is shown in Fig. 1.eY ðlLÞðyÞ is a continuous function on �1 < y < 1. From the crisp probability theory, we note thateY ðlLÞðY Þ is a crisp random variable. From Fig. 1 and y P 0, we can derive the expectation
EðeY ðlLÞðY ÞÞþ as follows:
EðeY ðlLÞðY ÞÞþ ¼
Z lL�rþD2

0

ðlL � r þ D2Þ � y
D2

� 1ffiffiffiffiffiffi
2p

p
rL

e
�ðyþr�lLÞ2

2r2
L

 !
dyð> 0Þ: ð12Þ
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Fig. 1. Triangular fuzzy number eY �ðlLÞ.
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Let w ¼ yþr�lL
rL

; /ðaÞ ¼ 1ffiffiffiffi
2p

p e�
a2
2 , and UðaÞ ¼ 1ffiffiffiffi

2p
p
R a
�1 e�

w2
2 dw, then from r=lL+krL, we obtain
EðeY ðlLÞðY ÞÞþ ¼ 1ffiffiffiffiffiffi
2p

p
D2

Z D2
rL

k
ðD2 � rLwÞe�

w2
2 dw ¼ U

D2

rL

� �
� UðkÞ þ rL

D2

/
D2

rL

� �
� /ðkÞ

� �
; ð13Þ
where /(Æ) and U(Æ) is the pdf and the cumulative distribution function (cdf) of the standard normal distri-
bution, respectively.

Let EðeY Þþ � EðeY ðlLÞðY ÞÞþ, then when the term E(X� r)+ in Eq. (2) is changed to be EðeY Þþ, we obtain
the following theorem.

Theorem 1. In Eq. (2), when the crisp random variable X with the probability distribution N(lL,rL) is changed

to be the fuzzy random variable eX (as expressed in Eq. (8)), we obtain the total expected annual cost in the

fuzzy sense
EAC�ðQ; L;D1;D2Þ ¼
D
Q
fAþ ½p þ p0ð1� bÞ
EðeY Þþ þ UðLÞg þ h Q

2
þ kr

ffiffiffi
L

p
þ ð1� bÞEðeY Þþ� �

; ð14Þ
for Q>0, L2[Li, Li�1], i=1,2, . . ., n.

As mentioned earlier, due to various uncertainties, the annual average demand may have a little fluctu-
ation, especially in a perfect competitive market. Therefore, it is difficult for the decision-maker to assess the
annual average demand by a crisp value D, but easier to determine it by an interval [D�D3, D+D4]. Similar
to the previous approach, corresponding to the interval [D�D3, D+D4], we can set the following triangular
fuzzy number
eD ¼ ðD� D3;D;Dþ D4Þ; ð15Þ

where D3 and D4 are determined by the decision-maker and should satisfy the conditions: 0<D3<D and
0<D4.

Again, by the centroid method, we get
CðeDÞ ¼ Dþ 1
3
ðD4 � D3Þ > 0; ð16Þ
which is the estimate of total demand in the fuzzy sense.

Theorem 2. Fuzzifying the annual average demand D in Eq. (14) to be the triangular fuzzy number eD as

showed in Eq. (15), then we obtain:

(i) the fuzzy total cost as
F ðQ;LÞðeDÞ ¼ eD
Q
fAþ ½p þ p0ð1� bÞ
EðeY Þþ þ UðLÞg þ h Q

2
þ kr

ffiffiffi
L

p
þ ð1� bÞEðeY Þþ� �

; ð17Þ
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(ii) the estimate of total expected annual cost in the fuzzy sense ase
KðQ; L;D1;D2;D3;D4Þ � CðF ðQ;LÞðDÞÞ

¼ EAC�ðQ; L;D1;D2Þ þ
ðD4 � D3Þ

3Q
fAþ ½p þ p0ð1� bÞ
EðeY Þþ þ UðLÞg; ð18Þ
for Q>0, L2 [Li, Li�1], i=1,2, . . .,n.

Proof

(i) For each Q>0, L2 [Li, Li�1], i=1,2, . . .,n, from Eq. (14), we set F(Q,L)(D)”EAC*(Q,L;D1,D2) and fuz-
zify D to be the fuzzy number eD as in Eq. (15), then the result showed in Eq. (17) is obtained.

(ii) Since Q>0 and Aþ ½p þ p0ð1� bÞ
EðeY Þþ þ UðLÞ > 0, hence we can get the following triangular
number:
F ðQ;LÞðeDÞ ¼ ðF 1; F 2; F 3Þ; ð19Þ
where
F 1 ¼
D� D3

Q
fAþ ½p þ p0ð1� bÞ
EðeY Þþ þ UðLÞg þ h Q

2
þ kr

ffiffiffi
L

p
þ ð1� bÞEðeY Þþ� �

¼ EAC�ðQ; L;D1;D2Þ �
D3

Q
fAþ ½p þ p0ð1� bÞ
EðeY Þþ þ UðLÞg;

F 2 ¼ EAC�ðQ; L;D1;D2Þ;

F 3 ¼
Dþ D4

Q
fAþ ½p þ p0ð1� bÞ
EðeY Þþ þ UðLÞg þ h Q

2
þ kr

ffiffiffi
L

p
þ ð1� bÞEðeY Þþ� �

¼ EAC�ðQ; L;D1;D2Þ þ
D4

Q
fAþ ½p þ p0ð1� bÞ
EðeY Þþ þ UðLÞg:
Utilizing the centroid method to defizzify F ðQ;LÞðeDÞ leads to

CðF ðQ;LÞðeDÞÞ ¼ 1

3
ðF 1 þ F 2 þ F 3Þ: ð20Þ
Substituting the above F1, F2 and F3 into Eq. (20), we obtain the result, which is denoted by
K(Q,L;D1,D2,D3,D4), as showed in Eq. (18).
4. The optimal solution

This section provides the solution procedure for the problem of determining the optimal order quantity
and the optimal lead time such that the total expected annual cost in the fuzzy sense has a minimum value,
while the decision-maker takes D1, D2, D3, D4 satisfying the conditions: 0<D1<lLn

(=lLn),
krL0ð¼ kr

ffiffiffiffiffi
L0

p
Þ < D2; 0 < D3 < D and 0<D4.

Let S={LjL2 [Li, Li�1], i=1,2, . . .,n}. Also, from Eq. (1), let
UiðLÞ � UðLÞ ¼ ciðLi�1 � LÞ þ
Xi�1
j¼1
cjðbj � ajÞ; i ¼ 1; 2; . . . ; n and

X0
j¼1
cjðbj � ajÞ ¼ 0:
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Further, from Eqs. (14) and (18), let
GiðQ; L;D1;D2;D3;D4Þ

¼ D
Q
fAþ ½p þ p0ð1� bÞ
EðeY Þþ þ UiðLÞg þ h

Q
2
þ kr

ffiffiffi
L

p
þ ð1� bÞEðeY Þþ� �

þ ðD4 � D3Þ
3Q

fAþ ½p þ p0ð1� bÞ
EðeY Þþ þ UiðLÞg; ð21Þ
for L2 [Li, Li�1], i=1,2, . . .,n, and Q>0.
Then, the mathematical expression of our problem is to find
MK � min
Q2;0;L2S

KðQ; L;D1;D2;D3;D4Þ ¼ min
L2S

min
Q2;0

KðQ; L;D1;D2;D3;D4Þ

¼ min
16 i6 n

min
L2½Li ;Li�1


min
Q2;0

GiðQ; L;D1;D2;D3;D4Þ: ð22Þ
Now, we first find minQ>0Gi(Q,L;D1,D2,D3,D4). For fixed i2{1,2, . . .,n}, and L2 [Li, Li�1], we take the
first and second partial derivatives of Eq. (21) with respect to Q, and obtain
o

oQ
GiðQ; L;D1;D2;D3;D4Þ ¼ � D

Q2
fAþ ½p þ p0ð1� bÞ
EðeY Þþ þ UiðLÞg þ

h
2

� ðD4 � D3Þ
3Q2

fAþ ½p þ p0ð1� bÞ
EðeY Þþ þ UiðLÞg;
and
o2

oQ2
GiðQ; L;D1;D2;D3;D4Þ ¼

2D

Q3
fAþ ½p þ p0ð1� bÞ
EðeY Þþ þ UiðLÞg

þ 2ðD4 � D3Þ
3Q3

fAþ ½p þ p0ð1� bÞ
EðeY Þþ þ UiðLÞg;
respectively.
Because o2Gi(Q,L;D1,D2,D3,D4)/oQ

2>0, thus for fixed i2{1,2, . . .,n}, and L2 [Li, Li�1], the minimum
value of Gi(Q,L;D1,D2,D3,D4) will occur at the point Q that satisfies oGi(Q,L;D1,D2,D3,D4)/oQ=0. Solving
this equation for Q (denote the value by Qð0Þ

i ðLÞ), we obtain
Qð0Þ
i ðLÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3Dþ D4 � D3Þ

3h
fAþ ½p þ p0ð1� bÞ
EðeY Þþ þ UiðLÞg

r
: ð23Þ
And the minimum value of Gi(Q,L;D1,D2,D3,D4) is GiðQð0Þ
i ðLÞ; L;D1;D2;D3;D4Þ, i.e., GiðQð0Þ

i ðLÞ; L;
D1;D2;D3;D4Þ ¼ minQ2;0GiðQ; L;D1;D2;D3;D4Þ.

Therefore, from Eq. (22), the problem reduces to find
MK ¼ min
16 i6 n

min
L2½Li ;Li�1


Gi Q
ð0Þ
i ðLÞ; L;D1;D2;D3;D4

� �
: ð24Þ
Next, for fixed i2{1,2, . . .,n}, by the numerical analysis method, we can find L0i 2 ½Li; Li�1
 such that
Gi Q
ð0Þ
i ðLð0Þi Þ; Lð0Þi ;D1;D2;D3;D4

� �
¼ min

L2½Li;Li�1

Gi Q

ð0Þ
i ðLÞ; L;D1;D2;D3;D4

� �
: ð25Þ
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Furthermore, for each i=1,2, . . .,n, we evaluate the value of GiðQð0Þ
i ðLð0Þi Þ; Lð0Þi ;D1;D2;D3;D4Þ and find

min16 i6 nGiðQð0Þ
i ðLð0Þi Þ; Lð0Þi ;D1;D2;D3;D4Þ. If GmðQð0Þ

m ðLð0Þm Þ; Lð0Þm ;D1;D2;D3;D4Þ ¼ min16 i6 nGiðQð0Þ
i ðLð0Þi Þ; Lð0Þi ;

D1;D2;D3;D4Þ, then we have
Table
Lead t

Lead t

1
2
3

MK ¼ Gm Q
ð0Þ
m ðLð0Þm Þ; Lð0Þm ;D1;D2;D3;D4

� �
: ð26Þ
Thus, the optimal lead time is L� ¼ Lð0Þm , and the optimal order quantity is Q� ¼ Qð0Þ
m ðLð0Þm Þ.
4.1. Numerical example

To illustrate the results of proposed model and compare them with those obtained from the crisp model,
let us consider an inventory system with the data used in [10]: D=600 units/year, A=$200 per order,
h=$20 per unit per year, p=$50 per unit short, p0=$150, r=7 units/week, q=0.2 (hence, k=0.8416),
and the lead time has three components with data shown in Table 1.

Using the data given in Table 1, we have the following length of lead time with some components
crashed to their minimum duration: L0=56 days, L1=56�14=42 days, L2=42�14=28 days,
L3=28�7=21 days. Hence, L3=minLi=21 days (=3 weeks), L0=max Li=56 days (=8 weeks),
0 < D1 < lL3 ¼ 34:62; D2 > kr

ffiffiffiffiffi
L0

p
¼ 16:66; 0 < D3 < D ¼ 600; 0 < D4. Also, the lead time crashing

costs are as follows.
For fixed i2{1,2,3} and L2 [Li, Li�1], from Eq. (23), we get the order quantity
Qð0Þ
i ðLÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1800þ D4 � D3

30
f200þ ½50þ 150ð1� bÞ
EðeY Þþ þ UiðLÞg;

r

and the corresponding total cost (from Eq. (21))
GiðQð0Þ
i ðLÞ; L;D1;D2;D3;D4Þ

¼ 600

Qð0Þ
i ðLÞ

f200þ ½50þ 150ð1� bÞ
EðeY Þþ þ UiðLÞg þ 20
1

2
Qð0Þ
i ðLÞ þ 5:8912

ffiffiffi
L

p
þ ð1� bÞEðeY Þþ� �

þ ðD4 � D3Þ
3Qð0Þ

i ðLÞ
f200þ ½50þ 150ð1� bÞ
EðeY Þþ þ UiðLÞg; L 2 ½Li; Li�1
; i ¼ 1; 2; 3;
where
EðeY Þþ ¼ U
D2

7
ffiffiffi
L

p
� �

� Uð0:8416Þ þ 7
ffiffiffi
L

p

D2

/
D2

7
ffiffiffi
L

p
� �

� /ð0:8416Þ
� �

:

Note that b, D1, D2, D3 and D4 are given parameters. When L is specified, we can use the formulas listed
in Table 2 to calculate Ui(L), and by checking the standard normal distribution table or using the software
1
ime data

ime component i Normal duration bi (days) Minimum duration ai (days) Unit crashing cost ci ($/day)

20 6 0.4
20 6 1.2
16 9 5.0



Table 2
Lead time crashing cost

i Ui (L)

1 0.4(56�L)=22.4�0.4L, for 426L6 56
2 1.2(42�L)+0.4·14=56�1.2L, for 286L6 42
3 5(28�1)+0.4·14+1.2·14=162.4�5L, for 216L 6 28
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such as Microsoft Excel to find the values of U D2

7
ffiffi
L

p
� �

; Uð0:8416Þ; / D2

7
ffiffi
L

p
� �

and /(0.8416), then calculate

EðeY Þþ. Once Ui(L) and EðeY Þþ are obtained, the values of Qð0Þ
i ðLÞ and GiðQð0Þ

i ðLÞ; L;D1;D2;D3;D4Þ, can
be found easily.

For example, consider a case where b=0, D1=10, D2=20, D3=25, D4=50. For i=1, L2 [L1,
L0]= [42,56], using U1(L)=22.4�0.4L and above procedure, we obtain the results listed in Table 3.

From Table 3, we find that the minimum value of G1ðQð0Þ
1 ðLÞ; L;D1;D2;D3;D4Þ, for L2 [42,56], is

$2538.03, which occurred at L=42 days and Qð0Þ
1 ðLÞ ¼ 112:46 units. From Eq. (25), this solution is denoted

by Lð0Þ1 ¼ 42; Qð0Þ
1 ðLð0Þ1 Þ ¼ 112:46 and G1ðQð0Þ

1 ðLð0Þ1 Þ; Lð0Þ1 ;D1;D2;D3;D4Þ ¼ 2538:03.

For i=2, L2 [L2, L1]= [28,42], U2(L)=56�1.2L; and i=3, L2 [L3, L2]= [21,28],U3(L)=162.4�5L, we

use the same procedure and obtain the following results: Lð0Þ2 ¼ 42; Qð0Þ
2 ðLð0Þ2 Þ ¼ 112:46; G2ðQð0Þ

2 ðLð0Þ2 Þ;
Lð0Þ2 ;D1;D2;D3;D4Þ ¼ 2538:03, and Lð0Þ3 ¼ 28; Qð0Þ

3 ðLð0Þ3 Þ ¼ 117:78; G3ðQð0Þ
3 ðLð0Þ3 Þ; Lð0Þ3 ; D1;D2;D3;D4Þ ¼

2591:76.
By comparing the values of GiðQð0Þ

i ðLð0Þi Þ; Lð0Þi ;D1;D2;D3;D4Þ, for i=1,2,3, we get the minimum value

MK ¼ G1ðQð0Þ
1 ðLð0Þ1 Þ; Lð0Þ1 ;D1;D2;D3;D4Þ ¼ G2ðQð0Þ

2 ðLð0Þ2 Þ; Lð0Þ2 ;D1;D2;D3;D4Þ ¼ 2538:03. Thus, the optimal

lead time is L� ¼ Lð0Þ1 ¼ Lð0Þ2 ¼ 42 days (=6 weeks), and the optimal order quantity is Q� ¼ Qð0Þ
1 ðLð0Þ1 Þ ¼

Qð0Þ
2 ðLð0Þ2 Þ ¼ 113 units (truncated).
Now, let us consider the cases for b=0, 0.5, 0.8, 1 with various sets of (D1,D2,D3,D4). By the procedure

outlined above, we obtain the computed results as showed in Table 4.
Moreover, in order to compare the results with those obtained from crisp model (crisp random lead-time

demand and crisp annual demand), we first list the optimal solution of crisp model in Table 5.
Table 3
The results of solution procedure for L2[L1,L0]=[42,56]

L (days) U1(L) EðeY Þþ Qð0Þ
1 ðLÞ G1ðQð0Þ

1 ðLÞ; L;D1;D2;D3;D4Þ
56 0.0 0.00375 110.51 2543.51
55 0.4 0.00412 110.64 2543.14
54 0.8 0.00451 110.77 2542.76
53 1.2 0.00493 110.90 2542.38
52 1.6 0.00537 111.04 2541.99
51 2.0 0.00584 111.17 2541.60
50 2.4 0.00634 111.31 2541.21
49 2.8 0.00686 111.45 2540.81
48 3.2 0.00742 111.59 2540.42
47 3.6 0.00801 111.73 2540.02
46 4.0 0.00863 111.87 2539.62
45 4.4 0.00929 112.01 2539.22
44 4.8 0.00998 112.16 2538.82
43 5.2 0.01072 112.31 2538.42
42 5.6 0.01149 112.46 2538.03



Table 4
The optimal solutions of proposed fuzzy model (L* in weeks)

Given parameters b=0 b=0.5

D1 D2 D3 D4 L* Q* MK L* Q* MK

10 20 25 50 6 113 2538.03 6 112 2533.25
10 20 30 100 6 114 2565.59 6 114 2560.75
10 20 35 150 6 115 2592.82 6 115 2587.92
10 25 25 50 6 113 2558.44 6 113 2546.00
10 25 30 100 8 113 2585.92 6 114 2573.66
10 25 35 150 8 114 2612.85 6 116 2600.99
10 30 25 50 8 112 2577.09 6 113 2559.06
10 30 30 100 8 114 2604.57 6 115 2586.88
10 30 35 150 8 115 2631.73 6 116 2614.36
10 20 50 25 6 111 2507.00 6 111 2502.29
10 20 100 30 6 109 2478.70 6 109 2474.05
10 20 150 35 6 108 2450.04 6 108 2445.44
10 25 50 25 6 112 2527.13 6 111 2514.87
10 25 100 30 6 110 2498.58 6 110 2486.47
10 25 150 35 6 109 2469.66 6 108 2457.70
10 30 50 25 8 111 2546.15 6 112 2527.75
10 30 100 30 8 109 2517.92 6 111 2499.19
10 30 150 35 8 108 2489.33 6 109 2470.26

b=0.8 b=1
10 20 25 50 6 112 2530.37 6 112 2528.46
10 20 30 100 6 113 2557.84 6 113 2555.90
10 20 35 150 6 115 2584.98 6 115 2583.02
10 25 25 50 6 112 2538.51 6 112 2533.50
10 25 30 100 6 114 2566.08 6 114 2561.01
10 25 35 150 6 115 2593.32 6 115 2588.19
10 30 25 50 6 113 2546.86 6 113 2538.69
10 30 30 100 6 114 2574.53 6 114 2566.26
10 30 35 150 6 116 2601.86 6 115 2593.50
10 20 50 25 6 111 2499.45 6 110 2497.56
10 20 100 30 6 109 2471.25 6 109 2469.38
10 20 150 35 6 108 2442.67 6 108 2440.83
10 25 50 25 6 111 2507.48 6 111 2502.54
10 25 100 30 6 110 2479.17 6 109 2474.29
10 25 150 35 6 108 2450.49 6 108 2445.68
10 30 50 25 6 111 2515.71 6 111 2507.65
10 30 100 30 6 110 2487.30 6 110 2479.34
10 30 150 35 6 108 2458.52 6 108 2450.66

Table 5
The optimal solutions of crisp model (from [10])

b Ls Qs EAC(Qs,Ls)

0.0 3 177 3780.00
0.5 4 158 3408.93
0.8 4 144 3123.70
1.0 4 134 2917.82
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Then, the relative error of lead time, order quantity, and minimum total expected annual cost in
the fuzzy sense can be measured by: RelL=[(L��Ls)/Ls]·100%, RelQ=[(Q��Qs)/Qs]·100%, and
RelTC=[(MK�EAC)/EAC]·100%, respectively. Using the values in Tables 4 and 5, and these formulas,
we obtain the results as summarized in Table 6.

In this example, for each case of b with various (D1,D2,D3,D4), it can be observed that the solutions
L�,Q� and MK of proposed fuzzy model are different from Ls,Qs and EAC of crisp model (L�>Ls,
Q�<Qs,MK<EAC; and RelL>0, RelQ<0, RelTC<0). We note that the numerical results depend on
the given values of problem parameters, which therefore, for other cases, it may get different results, In
the following section, we will show that the solutions of crisp and fuzzy models are approximately equal
at some certain cases.
Table 6
The relative error (%) of lead time, order quantity, and minimum total expected annual cost in the fuzzy sense

Given parameters b=0 b=0. 5

D1 D2 D3 D4 RelL RelQ RelTC RelL RelQ RelTC

10 20 25 50 100.00 �36.16 �32.86 50.00 �29.11 �25.69
10 20 30 100 100.00 �35.59 �32.13 50.00 �27.85 �24.88
10 20 35 150 100.00 �35.03 �31.41 50.00 �27.22 �24.08
10 25 25 50 100.00 �36.16 �32.32 50.00 �28.48 �25.31
10 25 30 100 166.67 �36.16 �31.59 50.00 �27.85 �24.50
10 25 35 150 166.67 �35.59 �30.88 50.00 �26.58 �23.70
10 30 25 50 166.67 �36.72 �31.82 50.00 �28.48 �24.93
10 30 30 100 166.67 �35.59 �31.10 50.00 �27.22 �24.11
10 30 35 150 166.67 �35.03 �30.38 50.00 �26.58 �23.31
10 20 50 25 100.00 �37.29 �33.68 50.00 �29.75 �26.60
10 20 100 30 100.00 �38.42 �34.43 50.00 �31.01 �27.42
10 20 150 35 100.00 �38.98 �35.18 50.00 �31.65 �28.26
10 25 50 25 100.00 �36.72 �33.14 50.00 �29.75 �26.23
10 25 100 30 100.00 �37.85 �33.90 50.00 �30.38 �27.06
10 25 150 35 100.00 �38.42 �34.67 50.00 �31.65 �27.90
10 30 50 25 166.67 �37.29 �32.64 50.00 �29.11 �25.85
10 30 100 30 166.67 �38.42 �33.39 50.00 �29.75 �26.69
10 30 150 35 166.67 �38.98 �34.14 50.00 �31.01 �27.54

b=0.8 b=1
10 20 25 50 50.00 �22.22 �18.99 50.00 �16.42 �13.34
10 20 30 100 50.00 �21.53 �18.12 50.00 �15.67 �12.40
10 20 35 150 50.00 �20.14 �17.25 50.00 �14.18 �11.47
10 25 25 50 50.00 �22.22 �18.73 50.00 �16.42 �13.17
10 25 30 100 50.00 �20.83 �17.85 50.00 �14.93 �12.23
10 25 35 150 50.00 �20.14 �16.98 50.00 �14.18 �11.30
10 30 25 50 50.00 �21.53 �18.47 50.00 �15.67 �12.99
10 30 30 100 50.00 �20.83 �17.58 50.00 �14.93 �12.05
10 30 35 150 50.00 �19.44 �16.71 50.00 �14.18 �11.12
10 20 50 25 50.00 �22.92 �19.98 50.00 �17.91 �14.40
10 20 100 30 50.00 �24.31 �20.89 50.00 �18.66 �15.37
10 20 150 35 50.00 �25.00 �21.80 50.00 �19.40 �16.35
10 25 50 25 50.00 �22.92 �19.73 50.00 �17.16 �14.23
10 25 100 30 50.00 �23.61 �20.63 50.00 �18.66 �15.20
10 25 150 35 50.00 �25.00 �21.55 50.00 �19.40 �16.18
10 30 50 25 50.00 �22.92 �19.46 50.00 �17.16 �14.06
10 30 100 30 50.00 �23.61 �20.37 50.00 �17.91 �15.03
10 30 150 35 50.00 �25.00 �21.29 50.00 �19.40 �16.01
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5. Discussions

[A] The relationship between Theorems 1 and 2.
We evaluate the difference of the total expected annual cost in the fuzzy sense obtained in Theorems 1

and 2 (ii) as follows.
jKðQ; L;D1;D2;D3;D4Þ � EAC�ðQ; L;D1;D2Þj ¼
1

3Q
fAþ ½p þ p0ð1� bÞ
EðeY Þþ þ UðLÞgjD4 � D3j:
It is clear when jD4�D3j is getting smaller, K(Q,L;D1,D2,D3,D4) and EAC�(Q,L;D1,D2) are getting clo-
ser, and if D3=D4, then K(Q,L;D1,D2,D3,D4)=EAC�(Q,L;D1,D2). Thus, it can be seen that Theorem 1 is a
special case of Theorem 2.

[B] The fuzzy probability of fuzzy set eY �ðlLÞ.
From the definition of fuzzy probability and Eq. (11), we obtain
eP ðeY �ðlLÞÞ ¼
1ffiffiffiffiffiffi
2p

p
rL

Z lL�r

lL�r�D1

y � ðlL � r � D1Þ
D1

e
�ðyþr�lLÞ2

2r2
L

 !
dy þ 1ffiffiffiffiffiffi

2p
p

rL

�
Z lL�rþD2

lL�r

ðlL � r þ D2Þ � y
D2

e
�ðyþr�lLÞ2

2r2
L

 !
dy: ð27Þ
Let w=(y+ r�lL)/rL and W=(Y+ r�lL)/rL, we obtain
eP ðeY �ðlLÞÞ ¼
1ffiffiffiffiffiffi
2p

p
D1

Z 0

�D1
rL

ðD1 þ rLwÞe�
w2
2 dwþ 1ffiffiffiffiffiffi

2p
p

D2

Z D2
rL

0

ðD2 � rLwÞe�
w2
2 dw

¼ 1ffiffiffiffiffiffi
2p

p
Z D2=rL

�D1=rL

e�
w2
2 dwþ rLffiffiffiffiffiffi

2p
p

D1

e
�

D2
1

2r2
L � 1

 !
þ rLffiffiffiffiffiffi

2p
p

D2

e
�

D2
2

2r2
L � 1

 !

¼ P
�D1

rL
6W 6

D2

rL

� �
� rLffiffiffiffiffiffi

2p
p 1

D1

1� e
�

D2
1

2r2
L

 !
þ 1

D2

1� e
�

D2
2

2r2
L

 !" #

¼ PðlL � r � D1 6 Y 6 lL � r þ D2Þ �
rLffiffiffiffiffiffi
2p

p 1

D1

1� e
�

D2
1

2r2
L

 !
þ 1

D2

1� e
�

D2
2

2r2
L

 !" #
; ð28Þ
where YN(lL� r,rL) and P(lL� r�D16Y6 lL� r+D2) is the crisp probability of the random variable Y
that belongs to the confidence interval [lL� r�D1, lL� r+D2].

Remark. Because eY �ðlLÞ ¼ ðlL � r � D1; lL � r; lL � r þ D2Þ, therefore, the Eq. (28) can be described as
the probability of the confidence interval [lL� r�D1,lL� r+D2] in the fuzzy sense. Furthermore, from Eq.
(28), we have eP ðeY �ðlLÞÞ < P ðlL � r � D16 Y 6 lL � r þ D2Þ.

[C] Compare the results between EðeY Þþ and E(Y)+(”E(X� r)+ in Eq. (2)).
For the crisp random variable Y=X� r with pdf showed in Eq. (9), by r=lL+krL and w=(y+ r�lL)/

rL,we get
EðY Þþ ¼
Z 1

0

y
1ffiffiffiffiffiffi
2p

p
rL

e
�ðyþr�lLÞ2

2r2
L dy ¼ rLffiffiffiffiffiffi

2p
p

Z 1

k
ðw� kÞe�w

2

2 dw ¼ rLf/ðkÞ � k½1� UðkÞ
g:
Besides, in Eq. (13), we have derived EðeY Þþ ¼ U D2

rL

� �
� UðkÞ þ rL

D2
/ D2

rL

� �
� /ðkÞ

h i
.
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Recall that U(Æ) and /(Æ) stands for cdf and pdf of standard normal distribution, respectively.
Therefore, we can measure the difference between EðeY Þþ and E(Y)+ as
EðeY Þþ � EðeY Þþ ¼ U
D2

rL

� �
� UðkÞ þ rL

D2

/
D2

rL

� �
� /ðkÞ

� �
� rLf/ðkÞ � k½1� UðkÞ
g

¼ U
D2

rL

� �
þ krL � ð1þ krLÞUðkÞ þ rL

D2

/
D2

rL

� �
� 1þ 1

D2

� �
rL/ðkÞ: ð29Þ
Since 0< r�lL=krL<krL0
<D2 and k ¼ ðr � lLÞ=rL ¼ ðr � lLÞ=ðr

ffiffiffi
L

p
Þ, hence, when r ! 0þ, k ! 1,

and then D2 ! 1. In this case, from Eq. (29), we have
lim
D2!1

½EðeY Þþ � EðY Þþ
 ¼ ð1þ krLÞ½1� UðkÞ
rL/ðkÞ: ð30Þ
Furthermore, from Eq. (30), we obtain
lim
k!1

lim
D2!1

½EðeY Þþ � EðY Þþ
 ¼ lim
k!1

fð1þ krLÞ½1� UðkÞ
 � rL/ðkÞg ¼ lim
k!1

1� UðkÞ
1=ð1þ krLÞ

� lim
k!1

rL/ðkÞ

¼ lim
k!1

/ðkÞ
rL=ð1þ krLÞ2

ðby L’Hospital ruleÞ ¼ lim
k!1

ð1þ krLÞ2ffiffiffiffiffiffi
2p

p
rLek

2=2

¼ lim
k!1

2ð1þ krLÞffiffiffiffiffiffi
2p

p
kek2=2

¼ 0:
Similarly, we can show limD2!1limk!1½EðeY Þþ � EðY Þþ
 ¼ 0.
Besides, instead of taking D2 ! 1 and k ! 1 in above mathematical analysis, we show numerically

that EðeY Þþ and E(Y)+ is quite close when some finite values of D2 and/or k are chosen. For example, con-
sider k=3.5, 4, 4.5, 4.9. From the table of standard normal distribution, we find U(k) and /(k), and obtain
the result of Eq. (30), i.e., (1 + krL)[1�U(k)]�rL/(k), as follows.
k
 U(k)
 /(k)
 (1+krL)[1�U(k)]�rL/(k)
3.5
 0.99976733
 0.00087268
 0.00023267�0.00005833rL

4.0
 0.99996831
 0.00013383
 0.00003169�0.00000709rL
4.5
 0.99999660
 0.00001598
 0.00000340�0.00000068rL
4.9
 0.99999952
 0.00000244
 0.00000048�0.00000009rL
On the other hand, we take D2=4.9rL and k=4.5, and calculate the result of Eq. (29). We obtain
EðeY Þþ � EðY Þþ ¼ Uð4:9Þ þ 4:5rL � ð1þ 4:5rLÞUð4:5Þ þ 1

4:9
/ð4:9Þ � 1þ 1

4:9rL

� �
rL/ð4:5Þ

¼ 0:99999952þ 4:5rL � ð1þ 4:5rLÞ0:9999966þ
0:00000244

4:9

� rL þ
1

4:9

� �
0:00001598

¼ 0:00000016� 0:00000068rL:
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This result shows that when D2=4.9rL and k=4.5 (which satisfies krL<D2) are taken, it will imply a
very small value of EðeY Þþ � EðY Þþ, i.e., EðeY Þþ and E(Y)+ is approximate equal, thus, the total expected
annual cost in the fuzzy sense EAC*(Q,L;D1,D2) obtained in Eq. (14) will approximate equal to that of
crisp case EAC(Q,L) showed in Eq. (2), so do their solutions. Moreover, by further taking D3=D4, then
K(Q,L;D1,D2,D3,D4) will close to EAC(Q,L) also, because K(Q,L;D1,D2,D3,D4)=EAC*(Q,L;D1,D2)
when D3=D4 (as discussed in [A]). In this case, the relative error of lead time, order quantity, and min-
imum total expected annual cost in the fuzzy sense will approach zero, i.e., RelL!0, RelQ!0,
RelTC!0.
6. Conclusions

For a mixture inventory model with variable lead time, Ouyang and Yao [11] has applied the fuzzy sets
theory to deal with the uncertain annual average demand, while the lead-time demand is treated as an ordi-
nary (crisp) random variable with unknown form of probability distribution. In this paper, we also consider
a mixture inventory model and address the issue of lead-time reduction in the fuzzy environments. Building
upon Ouyang et al.�s [10] model in which the annual average demand D is a crisp value and the random
lead-time demand X is normally distributed, we first fuzzify X to be a fuzzy random variable eX and derive
the total expected annual cost in the fuzzy sense. Then, we further fuzzify D to be the triangular fuzzy num-
ber eD and obtain the fuzzy total cost. After defuzzification, we derive the estimate of total expected annual
cost in the fuzzy sense and obtain the corresponding optimal order quantity and lead time.
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